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Mode Analytical Study of Cylindrical
Cavity Power Combiners

KIYOSHI FUKUI, MEMBER, IEEE, AND SHIGEJI NOGI

Abstract —A mode analytical treatment of cylindrical cavity power com-

biners is presented to discuss power-combining capability and the method

for attaining stable desired mode operation. Both the conventional

coaxial-probe output type and the window output type are treated, based

on a circuit model which can support TMOIO, TM020, and TM~10 modes

(1< m <N, N being the number of active devices employed). It is shown

that adoption of the window output largely facilitates undesired mode

suppression and also enables power combining in some azimuthal modes.

I. INTRODUCTION

R ECENTLY, TO meet the demands for high-power

microwave sources, various power-combining tech-

niques have been developed [1], [2]. Among them, the

resonant cavity combiner has been actively studied by

many authors. To this category belong the waveguide

cavity combiners first proposed by Kurokawa and

Magalhaes [3]–[9] and the cylindrical cavity combiners

originated by Harp and Stover [10]–[14]. While the latter

has excellent features in its small size and symmetrical

geometry, practicability in the millimeter-wave range is

less likely than in the microwave region because the mod-

ing problem becomes serious if the cavity diameter is

increased to accommodate more diodes. It is also said that

accurate fabrication of a coaxial output probe becomes

difficult at high frequencies, resulting in deterioration of

performances [2].

The most fundamental and important problems in the

discussion of a multiple-device cavity combiner are its

power-combining capability and stability of operation in a

desired mode. In a recent paper [14], the authors presented

a theoretical work concerning these problems for a cylin-

drical cavity multiple-device oscillator by discussing the

competitive relations between the desired power-combin-

ing mode and stable undesired modes. Such an approach is

beneficial in finding efficient combiner structures which

facilitate undesired mode suppression. For example, the

use of a window output structure (Fig. 1) is advantageous

in making mode control easy (see later sections). This

structure will also give a solution to the problem of manu-

facturability in the millimeter-wave region.

This paper presents a unified-mode analytical treatment

of cylindrical cavity combiners both with a probe output
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Fig. 1. Window output cylindrical cavity combiner (top view).
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and with a window output. For each combiner structure,

the power-combining modes and stable undesired modes

are derived by use of the averaged potential theory [15]. A

comparison of the two structures on the feasibility of mode

control for the stable desired mode operation is given.

II. CIRCUIT MODEL AND ITS NORMAL MODES

A. Circuit Model and Basic Equations

To render the problems amenable to analytical treat-

ment, we introduce a circuit model of a cylindrical cavity

combiner with N active devices shown in Fig. 2.1 The

current–voltage characteristic of the devices is assumecl as

4
J~= – gv~+ ~ev~ l<:<N. (1)

The load conductance g~ is connected to the center for the

probe output type as shown in the figure, and to site 1 on

the periphery for the window output type. In order for the

circuit model to be adequate for our purposes, it is neces-

sary that 1) the network without J~’s and g~, which we

call the generating system, supports all the relevant cavity

modes, and 2) coupling of the devices with the cavity field

can be described. The model of Fig. 2 fulfills the second

requirement because, if there exists any oscillation in the

generating system, the voltages u~’s act on the devices

whose active nonlinear currents in turn excite the oscilla-

tion. For the first requirement stated above, detaile~ dis-

cussions are given in Section II-B.

1For a discussion of the conventional coaxial-probe output type only,
we can use a simpler model which contains only N device sites and the
center (load position) [14].
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Fig. 2. Circuit model of a cylindrical cavity combiner (for

output type, g~ is placed at the site 1 on the periphery).

window

where
8 t?L

~=— cL— (4)
&Joc Ldoc

and

BP= L/Lp B,= L/LR. (5)

B. Normal Modes

Consider the generating system of the circuit model to

define the normal modes. Putting the right side in each of

(3) zero, the generating system is expressed by the follow-

ing vector differential equation:

d2v
—+ RY=O
dr2

with

V=[uo, ul,.. ., V2N 1’

and

(6a)

(6b)

r 2N~~ - B. -BR”””” ”””” ”””” ””-BR

–pR l+2pp+pR –& -.=:,,:::::: .......................-pp

- b, - BP “ . . . . ‘ “ “ “ ..>-’’- . . . . . . . ‘“j

B= . . . . .. . .],’-..... . . ..- . . ------. . ‘.%...4......... . . . .
---- . . . .

“--..... . . , . .
....... . . ““”-BP‘------- “ . .

.-).
_ &.-.....; ....... .

‘-----– BP “i+ 2pp + pR....................................

(6c)

Additionally, for the discussion of the output power of Then, the normal modes can be defined if the eigenvalues

the system and the stability of the modes, only the voltage CO?’sand the eigenvectors p,’s are obtained by solving

values at the N + 1 positions (N device positions plus one

load position) are needed, whatever detailed circuit model Bpi = (J:pl , 06i<2N (7a)
having many more lattice points2 maybe used [14]. Thus, with

the circuit model as shown here is considered to be an

appropriate model whose behavior is analogous to the P,= [POi>pll?” “ “P2fV, tit. (7b)
actual cylindrical cavity combiner.

Using a new time variable

r
The results are given below, where

~ = @o’r, U. = LC (2)

the governing equations of the circuit model are written as

d’vo ‘2N
—+&z(uo-vk)
dr 2

k=l

[

duo
for central loading.

– CLZ

is imposed.

1) i= O,l:

p:.pj=tl,j, O<i, j<2N (8)

lo for peripheral loading

d2v1

d~2
—+(1+2/?p +&)ul–pp(u2~+ U2)– BRVO

(
o for central loading

. dvl

– ‘Lx
for peripheral loading

d=vk

dr=
—+(l+2pp +&)uk-/3p(uk_1 +uk+J-/3#~

-;{l+(-1)’}(1-4;v: )~, 2< IZ<2N—

{

c~P., k=o
Pk, =

P&, l<k<2N
(lOa)

(3b)

where

1
_—

c+–2fiR {
1 + ~~ –2N~~ i (1+ ~~ –2N@~)2+ 8N~:

}
(3C)

p~=(c~+2N)-1. (lOb)

2A lattice model is often used for two-dimensionaf distributed-constant

systems. In the double signs appearing in (9) and (10), the upper
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and lower signs correspond to i = O and i =1, respectively.

2) 2<i<2N:

Po, = o (11)

Pk,

(l<k<2N)

w1 r(k–l)(i–1)
— Cos 2<i<N
N N’

1=(-l)k~~N-, i=N+l

{

1. 7r(k-l)(i -1)

z ‘ln N’
N+2<i<2N

(12)

The two modes i and ~= 2N + 2 – i are degenerate to

each other because

(d, = 6+, ~=2N+2–i (13)

is obtained from (11). The number of the degenerate-mode

pairs is N – 1, and the spatial patterns of a p~r differ Qnly

in phase by m/2 along the periphery.

We give here a brief comment on the correspondence

between the normal modes of the circuit model and the

resonant modes in the original cavity. First, mode 0“ and

mode 1 correspond, respectively, to the TMOIO and TM020

modes because they have constant amplitude distribution

at the periphery and the oscillation at the center is, respec-

tively, inphase and antiphase with the oscillation at the

periphery.
.,

Next, mode i (2 <i< N) and mode ~= 2N+2– i (N+

2 <~< 2N) have zero amplitude at the center and i – 1

times sinusoidal variation along azimuthal direction, so

these correspond to the TMi _ ~,l,o mode. Sin@arly, the

remaining mode N + 1 corresponds to the TM ~lo mode. In

the later sections, mode i‘s (2 < i < 2N ) are referred to as
“ fing”modes or “~muthfl’ modes.

Thus, the circuit model of Fig. 2 can support only the

N + 2 cavity modes TMOIO, TM020, and TMiT},l,o (2< i <

N + 1). However, these modes will be sufficient for the

discussion, in this paper because the frequency range of

active devices is limited. In addition, from a more practical

standpoint, as long as mode O or mode 1 is chosen as the

desired power-combining mode and N is taken as N >8,

the modes N/2 + 1< i < 3N/2 are often out of the relevant

frequency range, so these modes can be omitted when

simplicity of description is clesired.

III. AVERAGED POTENTIAL AND

POWER-COMBINING MODES

A. Averaged Potential

According to the averaged potential theory [15], the time

evolution of a system proceeds toward the direction of

decreasing value of the averaged potential of the system,

and the stationary states correspond to the minimum points

of the quantity. 3 For our system, it is composed of two

parts: the contribution from active devices U~, and that

from the load U~. They are defined as follows:

U~ = time average of ~ ~~ dv~
k

JU~ = time average of g~v, dv~ (14)

where u, stands for U. or UI depending on whether central

loading or peripheral loading is considered.

Using (1) and the normal-mode expansion of vk

1)~ = *f p~,AiCOS(ai’T + $~)> 0<k<2N (15)
j:o

we can express the averaged potential of the system as

4u= – ~ aiA~ + ~ ~ Y oijA~A~
,=0 2 ic~j=~

where (see Appendix I)

~i = g ~ Pii – gLP? (17)
k: even

{

for central loading

P,,= ‘~~ forpetipheral loading (18)

Oif= (2– ~*j)O X P;iP;~ (19)
k: even

and

ai is a small-signal gain parameter of mode i; the ampli-

tude of mode i grows as exp [air], as long as all the modes

are at low level. 6ii and Oij (i # j) are called self- and

mutual-saturation parameters, respectively, and their mag-

nitudes depend on the degree of spatial correlation be-

tween the relevant modes. $i;j; has a similar meaning to 6?,J

except that modes i and j are replaced by degenerate-mode

pairs (i,;) and (j, ~), respectively.

By substitution of (10) and (12) into (17)–(20), these

parameters can be evaluated. ai depends on the value of

g~, and will be given after determining the latter in Section

III-B. The expressions of ~lj’s and $i;j;’s are a little

lengthy, so their full extent is given in Appendix II. IBut a

simpler expression for 0,,’s is given in the following matrix

form for a reduced number of modes, discarding the

modes 1 + iV/2, -.. , 3N/2 as mentioned at the end of

3By this, the approach using the averagedpotential, which gives an
approximation of the sameorder as in the averagingmethod [16], largely
simplifies the discussionof stability of the stationary states.
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i=O

1

2

N/2[8,,/6] = (22a)

[-1
gij,
6

3N/2 + 1

2N

1
3
x.
‘.

.1 4 3, .1 i=z

“3
2 ‘3 1“”

.1”” 2
3
2. .1 3

N/4 + 1

N)2

3N/2 + 1

7N/4 + 1

2N

1“” “3 : 1“
2. “3

. . 4

.1
[16,, ‘ 1

7 ‘m
4 ., . . . . . . . . . . . . . . .4....... . . . (22b)

.13.

“3

.1

1“” “3

“J
2

1“

1’

3

2

4 1“

optimum load conductance are given asAll the elements left blank must be filled out with 2,

except the common factor l/4N. In (22a) and (22b), mode

numbers are given on the right of the matrix for reference.

B. Power-Combining Modes

Consider a steady state in which only one mode, say

mode i, is excited. The amplitude of steady oscillation at

this mode is determined by solving ~U/6A ?I~r # o, others =0

=Oas

A;= a,/6,Z = A;o. (23)

The output power in this state P(Z, i), where 1 takes O for

the case of central loading and 1 for the case of peripheral

loading, is then given by

P(1, i) = $gLp~A~ = +gLp?az/eii- (24)

gL is chosen so as to maximize p(l, i) and the optimum

value is denoted as gL,@(z, i).

In the case of central loading, pli = pol has a nonvanish-

ing value only for mode O and mode 1. The maximum

output power for these two modes and the corresponding

P~=(O, i)=~, i=O,l

{
g~.opt(o’ i) = ‘g/(Zc+ )2,

i=o
(26)

Ng/(2c- )2, 1=1”

(25)

Since the available power of an active device having the

current–voltage characteristic of (1) is given by g2/(8t9)

[5], it can be seen in (25) that perfect power combining of
all the available powers is possible either in mode O or in

mode 1.

For peripheral loading, p,, = PI, # O for the modes

0,1,2,. . . , N +1. so, we obtain the maximum output power

atmodei(O<i<N+l)
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which gives, using (10) and (12)

L
Ng2 N

-iii-’ i= 0,1, i+l, ~+1, N+l

Pmw(l, i) =
Ng2

120’ (
2<i<N i+ ;+1,:+1

)

(27)

Thus, the peripheral-loading system has three power-com-

bining ring modes other than mode O and mode 1, as

indicated in (27). The optimum load conductance for the

power-combining modes are

(

1
~Ng, i= 0,1, N+l

\

gz,OP,(l, i) = ~
N 3N

. (28)

~Ng, i=~+l, ~+l

In the following, we adopt mode 1 as the desired

power-combining mode both for central and peripheral

loading. Then, using g~,OPt(l, 1), the gain parameters can

be determined as

((N/2)(2-.i/.~)pig, i=()

I(N/2)p:g, i=l

lg)

for the central-loading

ai(l=l)

~(~/2)P:g,

(~/2)P:g>

o,

. –1
2g9

1
4g>

i
2g7

\g7

2<i C2N

i= N/2+1

i=3N/2+1

(i= N/2+l,3N/2+l) (29)

system, and

i=O

i=~

2<i<N (i#N/2+1)

i= N/2+1

i=N+l

N+2<i<2N (i#3N/2+1)

i=3N/2+1

(30)

for the peripheral-loading system. Then, the mode N/2 -!-1

in the central-loading system and the modes 2,3,. ... N in

the peripheral-loading system can be put out of considera-

tion because their a, values are zero or negative, which

means there is no possibility of oscillation. Note that the

peripheral-loading system has more nonoscillatory modes

than the central-loading system.

IV. STABILITY OF THE MODES

A. Stability Conditions

Now, we must ask if the desired power-combining mode

can be stable and how many and what type of undesired

stable modes exist in our power-combiner system.

Stability conditions can be derived from the criterion of

the averaged potential minimum. First, for the stability of

a single mode, say mode i, the criterion gives

au

8A: ~ =Ao,d*o*er, =o=–
ad + (1_ ~~di)odiA~O >0,

,,

for all d #i. (31)

This means that the steady-state oscillation at mocle i

makes the growth of all the other modes impossible.

Next, in order for mode i and mode j to form a stable

simultaneous double-mode oscillation, the following two

conditions must be satisfied. They are

.. (1- ;aj,)eij >0

(1- f;ji)ei~ %

(32)

and

au

dA ; A,= A,,, AJ=A,,,others=O

=— ad+ (1 – :8d;) O~iA~,

*>0,+(1 – ;Odl) O~jAj~ for all d# i, j. (33)

A,, and Aj~ are the steady-state amplitudes of both modes,

and can be obtained from

au au.—
aA: ,4,,A, + O, Othe,S = O (?/i; A A *ooher, =o

. 0

,,, ,

au a2u
—=0 “ —
i?+i ‘lth ay: >0 for j=;.

Condition (32) is necessary for the coexistence of both

modes. Equation (33) has a similar meaning of that of (31),

that is, other modes never grow due to the existence of the

double-mode oscillation.

B. Stable Modes

By use of the stability conditions given above, the stable

modes are derived both for the central loading and for the

peripheral loading. The results are listed in Table I. The

modes O and 1 are quasi-stable, as will be discussed

shortly, and do not enter the table. No simultaneous

multimode oscillations with higher multiplicity exist either

for the central loading or for the peripheral loading be-

cause we cannot find any mode groups in which every pair

of two component modes satisfies the coexistence condi-

tion (32). It should be noted that many of the stable mlodes

in the central-loading case turn to unstable modes in the

case of peripheral loading. This is because, in the latter,

the load on the periphery serves to raise the averaged
potential of many ring modes.

Common features in the stable modes can be expressed

as follows. i) every active device can oscillate at equiil (or

almost equal) amplitude, as seen in Fig. 3, where the mode

patterns are shown in developed form for the case N= 8.

The degenerate double mode (i, ~) in the central-loading
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TABLE I
LIST OF STABLE MODES

stable mode

single-mode

-—

degenerate
double-mode

nOn-
degenerate

double-mode

mode number
squared I averaged
amplitude I potential

i#v N/4+1 I

(v=1,2, ...,7)

*: ,

(N14+l-n

)(

N/4+l+n I

3N/4+l+n , 3N/4+1-n )
*,*i_~

(5N/4+-l-n)(5N/4+1-tn
) *, * +

7N/4+l+n , 7N/4+1-n

n=l, . . . ,N/4-l

For the peripheral-loading case, only the parts framed by the bold lines
. . . .

are ap bcable.

(70

~a

b’ :
stand for any mode pair of (a, c), (a, d), (b, c), aud (b, d).

case forms a rotating wave around the center because

+,= + 7r/2, and this enables all the active devices to

oscillate with exactly equal amplitude. ii) Oscillation am-

plitude at the load is zero in all the stable modes, which

makes U~ zero, the minimum contribution to the averaged

potential from the load part.

The desired mode (mode 1), which satisfies only item i)

and has the averaged potential of – Ng 2/320, is quasi-

stable because the left side of (31) is zero for some of the

ring modes. Thus, some plans are needed to stabilize the

desired mode and to make all the undesired modes unsta-

ble.

V. UNDESIRED MODE SUPPRESSION

Let us now proceed to the problem of stabilization of

the desired mode and simultaneous destabilization of un-

desired modes. Since mode O (TMOIO mode) and assuming

N >10, mode N + 1 (TM~10 mode) are far enough sep-

arated in frequency from the desired mode (TMOZO mode),

usually they are not excited at all because of the limited

working range of currently available diodes and, in case of

necessity, they can easily be suppressed by use of coaxial

modules [1]. So, in the following, we confine ourselves to

discussion of the suppression of all the remaining unde-
sired modes, that is, modes 2< i <2 N except i = N -t-1.

We introduce conductance g,P’s for absorbing unde-

sired azimuthal modes in the way as shown in Fig. 4. These

contribute to raise the averaged potential for undesired

modes without any effect on the desired mode. The incre-

ment of the averaged potential AU, due to introduction of

a conductance g,P between two neighboring device sites,

say k th and (k + 2)th, is given, by calculating the time

average of Jg,P(v~+2 – U~)d(U~+2 – Uk), as

2N N

AU= – ~ Aa,A; – ~ Acx,;A,A;cos+, (34)
,=0 1=2

,. . ,.- -.
Pkl “> ,, ..~ T

16 1 2 5“.J J..”- 8 9 10 “..1 . Jk’16 k
l=~N+l (=3)

. ...

,. .., -., / ..
~,, ,/’ ‘,, ,,, .,> ,/’ , ,,,

~., ,,, 3
.,, ,, ‘i\ /

i=+ N+l( =13)
~, ,$

., ,, J. ,, \ ,,

- -. . .
..< ,/,’ .. ,,, ..

..\ ,., ..\ ,., i=~f.J+j(=15)

. . .. . . . . .

-- -- -. -..-+ .--.
.&’- (i,;) =(2,2 N)(=(2,16))“ . . ...-. “

-.,, -.. ,..
~,> ,/ .. ..

,. -/ \ ,,,
,, ,?~.> 1= ;N+l-1 (=14)

~. .. /’ ~., ,,,. .

------
‘r’T

. .-.
-.. “ J=~N+l+l (=16)

1.4 lJ-*’-
1..

. ..-

Fig. 3. Spatial patterns of some typical stable modes (N= 8). Closed
circles refer to the amplitudes at the sites of active devices. Note that
the last two modes, i = 7N/4 and J = 7N/4 + 2, make mutuaf conces-
sions at the device sites to form a stable nondegenerate double mode.

Fig. 4. Introduction of g,P for suppression of undesired azimuthaf

modes.

with

@=-g, P(pk+z,,-pk,,)2

As,;= ‘2g~P(pk+*,~ ‘~k, i)(~k+2,; – Pk,;). (35)

When more than two pieces of g,P are used, summation

over k must be made on the right sides in (35).

A. Case of Central Loading

First, in the case of a central-loading system, use of a

single g$P has almost no effect on the suppression of the

azimuthal modes. The reason is as follows. Linear com-

bination of modes i = N/4+1 and ~= 7N/4 + 1 (or modes

i = 3N/4 + 1 and ~= 5N/4 + 1) can result in any azimuthal

shift of the spatial pattern of mode i (or mode ;). Then,

when a single g,P is introduced, the mode pair (i,;) forms

a standing-wave pattern such that the voltages at both

ends of g,P are equal to each other and can escape from

damping. Also, the mode pairs (i, ~) which appear as

rotating-wave double modes in the absence of g,P behave

in the same way and cannot be suppressed. Then, at least
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two pieces of g,P are necessary for suppression of these

modes. Since the optimum way of introducing two g~P’s is

different from mode to mode to be suppressed, we con-

sider the case in which every pair of neighboring device

sites are connected by g,P, In this case, Aal and Aali

become

(o, i= 0,1, N+l

Aal =

\

(i-l)7r
– 2g,P sin= N , otherwise

Aa,i = O. (36)

In order that any degenerate double mode (i, ~) is unstable

to permit the growth of the desired mode, the following

condition must be satisfied:

which is obtained by putting d = 1 and reversing the

inequality sign in (33). In (37), A,$ and A;, are the

steady-state amplitudes after introduction of g,P’s. It fol-

lows from (37) that

3 , (i-l)7r
for2<i<N

“p> ~gcosec N

for the suppression of the double mode (i, ~). The double

mode most difficult to suppress is (i,;) = (2, 2N ). Conse-

quently, the necessary and sufficient conditions for sup-

pression of all the azimuthal modes is given, denoting g,P

as g,P,Ce~,,, by

3 T

‘gSp ,Centr lb
s —Ngcosec2 ~. (38)

The factor Non both sides means that N pieces are being

used.

B. Case of Peripheral Loading

Next, in the case of the peripheral-loading system, all

the modes i < N have no possibility of excitation because

ai <0 due to the load on the periphery. Thus, the system

has no stable degenerate double modes, which largely

facilitates the mode control. Since all the modes to be

suppressed have the largest voltage difference at the inter-

val k = N and k = N +2, placing of one piece of g,p at

this interval must be most efficient for suppression. The

condition of suppression is given, this time, by

2>() for N+2<i<2Nal — f+lAIo (39)

which is obtained by putting d = 1 and reversing the

inequality sign in (31), and in which A~o = (a, + Aal)/O,,.

The required g,P value then becomes, denoting g,P as

gsp,periph

5 v
g,P ~eriP~> ~ Ng cosec2 ~. (40)

Let us now compare both the loading systems concern-

ing the feasibility of undesired mode suppression. By com-

paring (40) with (38), it is seen that adoption of the

peripheral loading largely facilitates the undesired mode

suppression, both in number and in the total quantity of

g,p’s required. From the practical side, the latter point will

be important in view of possible power loss due to g,p’s in

the desired mode. Incidentally, if N pieces of g~p are used

in the same manner as in the central-loading case,

the necessary g,P value is given by Ng,P > (5/32)Ng o

cosec2 (n\N ).

VI. CONCLUSIONS

A mode analytical study has been carried out on the

power-combining behavior of cylindrical cavity multiple-

device structures in the TMOZO mode, based on a Cilrcuit
model which can support TMOIO, TM 020,and TM~lo modes

(1< m < N). Both the conventional coaxial-probe output

type and the window output type have been treated and it

has been shown that the latter is preferable for undesired

mode suppression. The analysis developed in this paper is

useful not only for understanding the power-combining

mechanism and multimode behavior of the structures, but

also for finding effective methods or favorable structures

for undesired mode suppression. For example, nonuniform

arrangements of devices will be advantageous for the mode

control in the case of a relatively small number of umde-

sired modes to be suppressed. Experimental works on

window output structures are highly desired to confirm the

theory and to develop further possibilities, although some

successful results have already been obtained [17].

As described in Section 111, the window output cylin-

drical cavity can be employed also as a power combiner at

azimuthal modes such as TM ~,~, ~,o, which may be favora-

ble for use in the millimeter-wave region because of large

size for N properly chosen. Investigation of this case

would also be an interesting subject for further work.

APPENDIX I

DERIVATION OF (16)

Substitution of (1) into (14) gives

UD=+ ,x V:+:e,x v’;
k. even k. even

1
UL= ~gL~= (l= Oorl) (41)

where Vk2 and Vi are the time average of u; and uj,

respectively. Using (15) for u~ and putting $, = @Z– [};, we

obtain

-A, AiA,Ajcos #i COS $J

+ terms which vanish if summed up

over even k‘s. (42b)
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Substitution of (42) into (41) and use of the relations ACKNOWLEDGMENT

The authors wish to thank T. Kishimoto for his great

Z P,iP,i= ,,~enPliP? help in carrying out the calculations concerning the mode
k: even analysis.

= ~ p.?ipk,pk~= o (43]
k: even

gives the expression for UD.
For ~2 (1= O,1), the second term vanishes in (42a)

because plip[; = O. So, we have directly [1]

1 2N [2]

U~ = ~g= ~ P; A:. (44)
,=0

[3]

Summation of UD and U~ and the use of notati&s (17) -
[4]

(20) leads to the final expression (16).
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