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Mode Analytical Study of Cylindrical
Cavity Power Combiners

KIYOSHI FUKUI, MEMBER, IEEE, AND SHIGEJI NOGI

Abstract — A mode analytical treatment of cylindrical cavity power com-
biners is presented to discuss power-combining capability and the method
for attaining stable desired mode operation. Both the conventional
coaxial-probe output type and the window output type are treated, based
on a circuit model which can support TM 5, TM gy, and TM,,,;, modes
(1< m< N, N being the number of active devices employed). It is shown
that adoption of the window output largely facilitates undesired mode
suppression and also enables power combining in some azimuthal modes.

I. INTRODUCTION

ECENTLY, TO meet the demands for high-power

microwave sources, various power-combining tech-
niques have been developed [1], [2]. Among them, the
resonant cavity combiner has been actively studied by
many authors. To this category belong the waveguide
cavity combiners first proposed by Kurokawa and
Magalhaes [3]-[9] and the cylindrical cavity combiners
originated by Harp and Stover [10]-[14]. While the latter
has excellent features in its small size and symmetrical
geometry, practicability in the millimeter-wave range is
less likely than in the microwave region because the mod-
ing problem becomes serious if the cavity diameter is
increased to accomodate more diodes. It is also said that
accurate fabrication of a coaxial output probe becomes
difficult at high frequencies, resulting in deterioration of
performances [2].

The most fundamental and important problems in the
discussion of a multiple-device cavity combiner are its
power-combining capability and stability of operation in a
desired mode. In a recent paper [14], the authors presented
a theoretical work concerning these problems for a cylin-
drical cavity multiple-device oscillator by discussing the
competitive relations between the desired power-combin-
ing mode and stable undesired modes. Such an approach is
beneficial in finding efficient combiner structures which
facilitate undesired mode suppression. For example, the
use of a window output structure (Fig. 1) is advantageous
in making mode control easy (see later sections). This
structure will also give a solution to the problem of manu-
facturability in the millimeter-wave region.

This paper presents a unified-mode analytical treatment
of cylindrical cavity combiners both with a probe output
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Fig. 1. Window output cylindrical cavity combiner (top view).

and with a window output. For each combiner structure,
the power-combining modes and stable undesired modes
are derived by use of the averaged potential theory [15]. A
comparison of the two structures on the feasibility of mode
control for the stable desired mode operation is given.

II. Circuit MODEL AND ITS NORMAL MODES

A. Circuit Model and Basic Equations

To render the problems amenable to analytical treat-
ment, we introduce a circuit model of a cylindrical cavity
combiner with N active devices shown in Fig. 2.' The
current—voltage characteristic of the devices is assumed as

4
J, = —gu,+ =00v}

k
. 1)

1< E < N.

The load conductance g, is connected to the center for the
probe output type as shown in the figure, and to site 1 on
the periphery for the window output type. In order for the
circuit model to be adequate for our purposes, it is neces-
sary that 1) the network without J’s and g;, which we
call the generating system, supports all the relevant cavity
modes, and 2) coupling of the devices with the cavity field
can be described. The model of Fig. 2 fulfills the second
requirement because, if there exists any oscillation in the
generating system, the voltages v,’s act on the devices
whose active nonlinear currents in turn excite the oscilla-
tion. For the first requirement stated above, detailed dis-
cussions are given in Section II-B.

IFor a discussion of the conventional coaxial-probe output type only,
we can use a simpler model which contains only N device sites and the
center (load position) [14].
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Fig. 2. Circuit model of a cylindrical cavity combiner (for window
output type, g, is placed at the site 1 on the periphery).

| 2NBg — Br
—Br 1+2B8,+8;
P
|~ Be

Additionally, for the discussion of the output power of
the system and the stability of the modes, only the voltage
values at the N +1 positions (N device positions plus one
load position) are needed, whatever detailed circuit model
having many more lattice points?> may be used [14]. Thus,
the circuit model as shown here is considered to be an
appropriate model whose behavior is analogous to the
actual cylindrical cavity combiner.

Using a new time variable

T = WyT, w,=VLC (2)
the governing equations of the circuit model are written as
d'v,y N
Tt Bngl (v, = vy)
dv )
A for central loading (3a)
0 for peripheral loading
d%,
P + (14285 + Br) vy = Bp( 02y + v;,) = Brog
0 for central loading
= dv, . . (3b)
e for peripheral loading
T
d%,

e +(1+28p+ Br) vy — Bp(vp—1+ V4i1) — BrVx
dv,

=§{1+(~1V}(1—4§va-—3

2<k<2N (3¢)
dr

2A lattice model is often used for two-dimensional distributed-constant
systems.
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where
g gL
= — —_ 4
€ eLwOC ( )

and
:BP= L/LP :BR= L/Lg.

B. Normal Modes

Consider the generating system of the circuit model to
define the normal modes. Putting the right side in each of
(3) zero, the generating system is expressed by the follow-
ing vector differential equation:

d% Bo0
— +Bo=
dr?

()

(6a)

with

(6b)

v= [UO’UI}"':UZN]I

| (6¢c)
w Bp 1428+ Bz ]

Then, the normal modes can be defined if the eigenvalues
w?’s and the eigenvectors p,’s are obtained by solving

Bp,=wlp,, O0<i<2N (7a)
with
P.=1poispr-- Pan., ] (7b)

The results are given below, where

0<i, j<2N (8)

pi-p;=%,,

is imposed.
1) i=01:

1
@ = > (14 B+ 2B T (14 B~ 2NB, ) +8NB} ) (9)

_fespy, k=0
pkl_{Pi’ 1<k<?2N (103)
where
- 1 \/ 2 2
¢ =5 {1+ Ba—2MBx £ (1 + Br —20NB,)" +8NG3 )
2B

pi=(c2+2N)"". (10b)

In the double signs appearing in (9) and (10), the upper
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and lower signs correspond to i = 0 and i =1, respectively.
2) 2<i<2N:

m{i—1
w? =1+ By +4Bp sin® (2N)
Po, =0 (11)
Pi,
(A<k<2N)
1 a(k—-1)(i—-1
YN T
={(-1)*1/2N, i=N+1
/1 a(k—-1)(i—1
—]‘v— Sin—g“—N)(’*——), N+2<i<2N
(12)

The two modes i and i=2N+2—i are degenerate to
each other because

W, = wj,

i=2N+2—i (13)
is obtained from (11). The number of the degenerate-mode
pairs is N —1, and the spatial patterns of a pair differ only
in phase by «/2 along the periphery.

We give here a brief comment on the correspondence
between the normal modes of the circuit model and the
resonant modes in the original cavity. First, mode 0 and
mode 1 correspond, respectively, to the TM;, and TM g,
modes because they have constant amplitude distribution
at the periphery and the oscillation at the center is, respec-
tively, inphase and antiphase with the oscﬂlatlon at the

periphery.

Next mode i (2<i<N)and mode i =2N+2—i (N+
2 £i<2N) have zero amplitude at the center and i—1
times sinusoidal variation along azimuthal direction, so
these correspond to the TM,_; ;, mode. Similarly, the
remaining mode N +1 corresponds to the TM ,, mode. In
the later sections, mode i’s (2 <i < 2N) are referred to as
“ring” modes or “azimuthal” modes.

Thus, the circuit model of Fig. 2 can support only the
N +2 cavity modes TM g g, TM g, and TM;_; ; o R <i <
N +1). However, these modes will be sufficient for the
discussion, in this paper because the frequency range of
active devices is limited. In addition, from a more practical
standpoint, as long as mode 0 or mode 1 is chosen as the
desired power-combim'ng mode and N is taken as N> 8§,
the modes N/2+1< i< 3N/2 are often out of the relevant
frequency range, so the_se modes can be omitted when
simplicity of description is desired.

III. AVERAGED POTENTIAL AND
PowER-COMBINING MODES

A. Averaged Potential

According to the averaged potential theory [15], the time
evolution of a system proceeds toward the direction of
decreasing value of the averaged potential of the system,
and the stationary states correspond to the minimum points
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of the quantity.® For our system, it is composed of two
parts: the contribution from active devices Up, and that
from the load U, . They are defined as follows

Uy, = time average of ). f Jdv,
k

U, = time average of f 80,4y, (14)
where v, stands for v, or v, depending on whether central
loading or peripheral loading is considered.
Using (1) and the normal-mode expansion of v,
2N

UV = E pktAicos(wiT + ‘?l)’

i=0

0<k<2N (15)

we can express the averaged potential of the system as

2N 2N 2N
AU = - ZaiA2+ Y. L 6,44}
t=Q 1—0] 0

+3 Z 0;;A%A? cos 2y,

1k

i=2
+8 Z Z §;;4:4;4;A;cos Y, cosy;  (16)
i=2j=2
where (see Appendix I)
@,=g Y Pi—8.Pi (17)
k: even
_ | Poi  for central loading (18)
Pn py, for peripheral loading
0= (2- 8:;)0 > plzciplzcj (19)
k: even
§ij=0 L PuPuiPiPij (20)
k: even
and
V=, ~ ¢;. (21)

a, is a small-signal gain parameter of mode i; the ampli-
tude of mode i grows as exp[a,), as long as all the modes
are at low level. 6, and 6, (i# j) are called self- and
mutual-saturation parameters, respectively, and their mag-
nitudes depend on the degree of spatial correlation be-
tween the relevant modes. §;;;; has a similar meaning to 6,
except that modes i and j are replaced by degenerate-mode
pairs (i,1) and (J, J), respectively.

By substitution of (10) and (12) into (17)—(20), these
parameters can be evaluated. «; depends on the value of
8, and will be given after determinjng the latter in Section
III-B. The expressions of 0 s and 5 7S are a little
lengthy, so their full extent is glven in Appendlx II. But a
simpler expression for §,;’s is given in the following matrix
form for a reduced number of modes, discarding the
modes 1+ N/2,---,3N/2 as mentioned at the end of

3By this, the approach using the averaged potential, which gives an
approximation of the same order as in the averaging method {16), largely
simplifies the discussion of stability of the stationary states.
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Npt  2NpipE pE
2Np?t p? Np* p*
24 P2
.2 .2
P >
[6,/6] = *
2p2 2p%
P j2
P 2
3 1
3
2 .
Bl
’ 3
2.
L 3
[0,1]/ 1 [11 2
— =m .................
b 3. 1
3 1
2
1 3
1 3

All the elements left blank must be filled out with 2,
except the common factor 1/4N. In (22a) and (22b), mode
numbers are given on the right of the matrix for reference.

B. Power-Combining Modes

Consider a steady state in which only one mode, say
mode i, is excited. The amplitude of steady oscillation at
this mode is determined by solving 8U/847| 4 4, others=0
={ as

At2 = al/otl = A120 (23)
The output power in this state P(/, i), where / takes 0 for

the case of central loading and 1 for the case of peripheral
loading, is then given by

P(l,i) =38, phAl=38.p50, /0. (24)

g, 18 chosen so as to maximize p(/,i) and the optimum
value is denoted as g; ., (/, 7).

In the case of central loading, p, = p,, has a nonvanish-
ing value only for mode 0 and mode 1. The maximum
output power for these two modes and the corresponding

AR Y S pi| i=0
p: 2pr  p? P 1
2
N/2 (22a)
o
8
3N/2+1
1 2N
4 3 1 i=2
3 1
2 N/4+1
1 3 :
, N/2
1 3
B oo 4 |3N/2+1 (22b)
i 1 ;
3
2 Lt
1 IN/4+1
7 :
4 1 3] 2N

optimum load conductances are given as

2

Ng
P (0,i)=— i=0,1

86 ° (25)

L [Ng/2e,) i=0
gL,opt(O’l) = ’ 5 )
Ng/(2c¢_)", i=1

Since the available power of an active device having the
current—voltage characteristic of (1) is given by g2/(86)
[5], it can be seen in (25) that perfect power combining of
all the available powers is possible either in mode 0 or in
mode 1.

For peripheral loading, p,= p,,#0 for the modes
0,1,2,---, N +1. so, we obtain the maximum output power
atmode i O<i<N+1)

(26)

L& 2\
pmax(l’l)"g:( Z pkl)

v ki even
for

g
8.=— L Pi
pltk:even



FUKUI AND NOGI: CYLINDRICAL CAVITY POWER COMBINERS

which gives, using (10) and (12)

Ng’ ot Y N
“on ? =U,1, — ’_—+ >
_ 80 ! 4 4 *
Pmax(19l) = Ng2 N AN
o 2<i<N |i#t—+1,—
126 ° st i*Ttl H)

o)

Thus, the peripheral-loading system has three power-com-
bining ring modes other than mode 0 and mode 1, as
indicated in (27). The optimum load conductances for the
power-combining modes are

1
—~Ng, i=0,1,N+1
. 2
gL,opt(]"l)= 1 N 3N . (28)
—Ng, j=—+1,—+1
48 478

In the following, we adopt mode 1 as the desired
power-combining mode both for central and peripheral
loading. Then, using g; ,..(/,1), the gain parameters can
be determined as

(N/2)(2- /e )phg,  i=0
(N/2)plg, i=1
a,(1=0)={ 1, 2<i<2N
0, i=N/2+1
g, i=3N/2+1

(i=N/2+1,3N/2+1) (29)
for the central-loading system, and

o, (1=1)

(N/2)pig, =0
(N/2)plg,  i=1
0, 2<i<N (i#N/2+1)

={ —1g, i=N/2+1
i8> i=N+1
18> N+2<i<2N (i#3N/2+1)
g i=3N/2+1

(30)

for the peripheral-loading system. Then, the mode N/2+1
in the central-loading system and the modes 2,3,---, N in
the peripheral-loading system can be put out of considera-
tion because their «, values are zero or negative, which
means there is no possibility of oscillation. Note that the
peripheral-loading system has more nonoscillatory modes
than the central-loading system.

IV. STABILITY OF THE MODES

A. Stability Conditions

Now, we must ask if the desired power-combining mode
can be stable and how many and what type of undesired
stable modes exist in our power-combiner system.
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Stability conditions can be derived from the criterion of
the averaged potential minimum. First, for the stability of
a single mode, say mode i, the criterion gives

iy

=—a,+
342 a+

A, = A,,all others =0

1- %6(17) 0,,4%>0,

forall d+i. (31)

This means that the steady-state oscillation at mode i
makes the growth of all the other modes impossible.

Next, in order for mode i and mode j to form a stable
simultaneous double-mode oscillation, the following two
conditions must be satisfied. They are

—18.
(1—:;:)0 " ;6,,.)0,.,- >0 (32)
Jt7 7 J.
and
U
a‘4‘1:‘1 =A4,,,4,= A,,others=0

=—ay, (1 - 58d;) adiAts

+(1—%3dj)0de12's>0’ foralld #1i, j. (33)

A,, and A, are the steady-state amplitudes of both modes,
and can be obtained from

aUu au 0
aAtz 4,4, + 0,0thers =0 3A12 A,, A, # 0,0thers = O—
U _w
31[/ =0 with — (wz >0 for j=i.

Condition (32) is necessary for the coexistence of both
modes. Equation (33) has a similar meaning of that of (31),
that is, other modes never grow due to the existence of the
double-mode oscillation.

B. Stable Modes

By use of the stability conditions given above, the stable
modes are derived both for the central loading and for the
peripheral loading. The results are listed in Table I. The
modes 0 and 1 are quasi-stable, as will be discussed
shortly, and do not enter the table. No simultaneous
multimode oscillations with higher multiplicity exist either
for the central loading or for the peripheral loading be-
cause we cannot find any mode groups in which every pair
of two component modes satisfies the coexistence condi-
tion (32). It should be noted that many of the stable modes
in the central-loading case turn to unstable modes in the
case of peripheral loading. This is because, in the latter,
the load on the periphery serves to raise the averaged
potential of many ring modes.

Common features in the stable modes can be expressed
as follows. i) every active device can oscillate at equal (or
almost equal) amplitude, as seen in Fig. 3, where the mode
patterns are shown in developed form for the case N =8.
The degenerate double mode (i,7) in the central-loading



948
TABLE 1
L1ST OF STABLE MODES
squared averaged
stable mode mode number amplitude potential
VH/8+1 (v=1,3) 20g /0 -Hg?/86
2
single-mode N+l 2Ng/8 ~-Ng“/880
3W/2+1 Ng/o -ng2/8e
Vi/4+1 (v=5,7) 20g /8 -ng%/86
- 2
, Ng & N
degenerate i, - g
double-mode 25isw L2 89
L#FVN/4+1
(v=1,2,+++,7)
: f
*
N/4+1-n N/4+1+n ) 2
non- (3N/4+l+ ) IN/4+1- 3 ﬁﬁ?' %ﬁ? - Z%e
degenerate n ”
double-mode (5N/4+l n\ (5H/4+14n\ | 4Ng &Ng | _ Ng°
7N/4+l+n 7N/4+l n> 3656 106
n=l,ee. N/4-1

For the peripheral-loading case, only the parts framed by the bold lines
are apSIicable.

a s (2) stand for any mode pair of (a, ¢), (a,d), (b, ¢), and (b,d).

*

b

case forms a rotating wave around the center because
Y,==+x/2, and this enables all the active devices to
oscillate with exactly equal amplitude. ii) Oscillation am-
plitude at the load is zero in all the stable modes, which
makes U, zero, the minimum contribution to the averaged
potential from the load part.

The desired mode (mode 1), which satisfies only item 1)
and has the averaged potential of — Ng?/324, is quasi-
stable because the left side of (31) is zero for some of the
ring modes. Thus, some plans are needed to stabilize the
desired mode and to make all the undesired modes unsta-
ble.

V. UNDESIRED MODE SUPPRESSION

Let us now proceed to the problem of stabilization of
the desired mode and simultaneous destabilization of un-
desired modes. Since mode 0 (TM,, mode) and assuming
N 210, mode N +1 (TMy,;, mode) are far enough sep-
arated in frequency from the desired mode (TM y,, mode),
usually they are not excited at all because of the limited
working range of currently available diodes and, in case of
necessity, they can easily be suppressed by use of coaxial
modules [1]. So, in the following, we confine ourselves to
discussion of the suppression of all the remaining unde-
sired modes, that is, modes 2 <i < 2N except i=N +1.

We introduce conductances gsp ’s for absorbing unde-
sired azimuthal modes in the way as shown in Fig. 4. These
contribute to raise the averaged potential for undesired
modes without any effect on the desired mode. The incre-
ment of the averaged potential AU, due to introduction of
a conductance g,, between two neighboring device sites,
say kth and (k +2)th, is given, by calculating the time
average of [g,,(v,15 = 0,)d(v, 12— 0;), as

2N N
—~ Y Aa,4?— Y Aa;A,A:cos ¢, (34)
1=0 =2
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Lclﬂ ,,,,T'T“T\Luf,,(T«T\ - Tnerem

MTrres TITIIF el (1.7 =(2,2N) (=(278))
1= %N+1-1 {=14)
= LN+ (=16)

Fig. 3. Spatial patterns of some typical stable modes (N = 8). Closed
circles refer to the amplitudes at the sites of active devices. Note that
the last two modes, i = 7TN/4 and j = TN/4+ 2, make mutual conces-
sions at the device sites to form a stable nondegenerate double mode.

Z
_

Fig. 4. Introduction of g, for suppression of undesired azimuthal
modes.

with

Aal = gsp(pk+2,l —pk,l)2
(35)

Ba,; = _2gsp(Pk+2.i - Pk,i)(Pk+2,?~ Pri)
When more than two pieces of g, are used, summation
over k must be made on the right sides in (35).

A. Case of Central Loading

First, in the case of a central-loading system, use of a
single g, has almost no effect on the suppression of the
azimuthal modes. The reason is as follows. Linear com-
bination of modes i = N/4+1 and i = 7N/4+1 (or modes
i=3N/4+1 and i = 5N/4+1) can result in any azimuthal
shift of the spatial pattern of mode i (or mode 7). Then,
when a single g, , is introduced, the mode pair (i, i) forms
a standing-wave pattern such that the voltages at both
ends of g,, are equal to each other and can escape from
damping. Also, the mode pairs (i,i) which appear as
rotating-wave double modes in the absence of g, behave
in the same way and cannot be suppressed. Then, at least
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two pieces of g , are necessary for suppression of these
modes. Since the optimum way of introducing two g, s is
different from mode to mode to be suppressed, we con-
sider the case in which every pair of neighboring device
sites are connected by g,,. In this case, Aa, and Aaj;
become

0, i=0,1,N+1

5 (i-1)=

Aa, = .
—2g,,8In

t

, otherwise

Aa;=0.

(36)
In order that any degenerate double mode (i, /) is unstable

to permit the growth of the desired mode, the following
condition must be satisfied:

o, — 0,42 — 0;43>0 for2<i<N

; (37)
which is obtained by putting d=1 and reversing the
unequality sign in (33). In (37), 4,, and A4;, are the
steady-state amplitudes after introduction of g ,’s. It fol-
lows from (37) that
i—1
g, > —3—gcose(:2 -———(l ki for
716 N
for the suppression of the double mode (i, 1). The double
mode most difficult to suppress is (i,7) = (2, 2N). Conse-
quently, the necessary and sufficient conditions for sup-
pression of all the azimuthal modes is given, denoting g,,

as gsp,centr’ by

2€ig N

3 @
2
Ngsp,centr > ENg €osec N . (38)
The factor N on both sides means that N pieces are being
used.

B. Case of Peripheral Loading

Next, in the case of the peripheral-loading system, all
the modes i < N have no possibility of excitation because
a,; < 0 due to the load on the periphery. Thus, the system
has no stable degenerate double modes, which largely
facilitates the mode control. Since all the modes to be
suppressed have the largest voltage difference at the inter-
val k=N and k=N +2, placing of one piece of g, at
this interval must be most efficient for suppression. The
condition of suppression is given, this time, by

o, —0,4%>0 for N+2<i<2N (39)

which is obtained by putting d=1 and reversing the
unequality sign in (31), and in which 4% = («, + Aa,)/9,,.
The required g,, value then becomes, denoting g, as
g:p,periph

5 , T

8sp,periph = aNg cosec” .

Let us now compare both the loading systems concern-
ing the feasibility of undesired mode suppression. By com-
paring (40) with (38), it is seen that adoption of the
peripheral loading largely facilitates the undesired mode
suppression, both in number and in the total quantity of
8;,’s required. From the practical side, the latter point will

(40)
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be important in view of possible power loss due to g,,’s in
the desired mode. Incidentally, if N pieces of g, are used
in the same manner as in the central-loading case,
the necessary g,, value is given by Ng,,>(5/32)Ng:
cosec?(m/N).

VI. CoNCLUSIONS

A mode analytical study has been carried out on the
power-combining behavior of cylindrical cavity multiple-
device structures in the TM,, mode, based on a circuit
model which can support TM 5, TM 59, and TM,,,,, modes
(1< m < N). Both the conventional coaxial-probe output
type and the window output type have been treated and it
has been shown that the latter is preferable for undesired
mode suppression. The analysis developed in this paper is
useful not only for understanding the power-combining
mechanism and multimode behavior of the structures, but
also for finding effective methods or favorable structures
for undesired mode suppression. For example, nonuniform
arrangements of devices will be advantageous for the mode
control in the case of a relatively small number of unde-
sired modes to be suppressed. Experimental works on
window output structures are highly desired to confirm the
theory and to develop further possibilities, although some
successful results have already been obtained [17].

As described in Section III, the window output cylin-
drical cavity can be employed also as a power combiner at
azimuthal modes such as TM , ; o, which may be favor-
able for use in the millimeter-wave region because of large
size for N properly chosen. Investigation of this case
would also be an interesting subject for further work.

APPENDIX ]

DERIVATION OF (16)

Substitution of (1) into (14) gives
1

1
Up=-38 Z Vk2+ 0 Z V/?
2 k: even 3 k: even :
1
U =—gV? (I=0o0r1) (41)

2
where V2 and V}} are the time average of v} and vy,
respectively. Using (15) for v, and putting ¢, = ¢, — ¢;, we
obtain

2N N
Vi= B Y Pi Al + X pupiiA,A;cosy, (42a)
i=0 =2
3 2N 2N
Vi=-= X X (2-8,)pipi A4
8 1=0 =0

3 N
+7 Y. Pr. P AZAY cos2y,
i=2

N
+6 Y, X PrPiiPi,Pr;
1=2j=2

"A,A;A, Ajcos Y, cos
-+ terms which vanish if summed up

over even k’s. (42b)



950 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 9, SEPTEMBER 1986

Substitution of (42) into (41) and use of the relations

Z PriPii= E Piipz’

k: even k:even

= Y PhPi,P=0

k: even

(43)

gives the expression for Up,.
For V2 (I=0,1), the second term vanishes in (42a)
because p,; p; = 0. So, we have directly

1

2N
U= ZgL Z PIZiAzz' (44)
1=0

Summation of Uy, and U, and the use of notations (17) ~
(20) leads to the final expression (16).

APPENDIX II

2 2
EXPRESSIONS FOR 6, ’s AND ;7 -’S
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